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1. ABSTRACT OF THE THESIS
The aim of the thesis is to study some properties of local cohomology modules with respect to a pair of ideals, generalized local cohomology modules with respect to a pair of ideals. We study the minimax and (I,M)-cominimax properties and the artinianness of the generalized local cohomology modules 
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 with respect to a pair of ideals (I,J).  We also show some results on the top generalized local cohomology modules. Some results about the finiteness of associated primes of  local cohomology modules concerning  Grothendieck's conjecture and Huneke's question will be shown. We introduce the concept of (I,J)-coweakly Laskerian modules and study their properties concerning to local cohomology modules with respect to a pair of ideals. We also study  some properties of the local cohomology modules and the relationships on the weakly artinianness of the modules 
[image: image2.wmf],

()

i

IJ

HM

and 
[image: image3.wmf]().

i

I

HM




2. NEW RESULTS OF THE THESIS
i) Let M be an R-module and n an non-negative integer such that 
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is (I,J)-coweakly Laskeran for all i < n. If 
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is J-weakly Laskeran, then 
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 is J – weakly Laskeran. If 
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 are J-weakly Laskeran, then 
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is J-weakly Laskeran if and only if 
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ii) If 
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is J- weakly Laskeran for all 
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 and n an non-negative integer such that 
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is (I,J)-coweakly Laskeran for all 
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iii) If 
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 is local ring and t an non-negative integer such that 
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 for all 
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 It is showed that 
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, M is finitely generated and 
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iv) We have the equivalent conditions on the Artinianness of 
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 It is closed that deals with the top cohomology module 
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 when M is weakly Laskeran. We also see that 
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 is finite.
v) We showed that 
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 is weakly Artinian if M is weakly Laskeran when 
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vi) If N is minimax module, then 
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 is Artinian module, where 
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 In the case 
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vii) In a local ring 
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viii) Let M be a finitely generated and N an R-module and t an non-negative integer such that 
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 We assume in the addition that 
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ix) The thesis also shows that 
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x) Let t an non-negative integer such that 
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and k = 0 or k = 1, then 
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xi) We obtained a finite result of the set 
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xii) Let M is finitely generated R-module, N an R-module and t an non-negative integer such that 
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 If N is weakly Laskerian, then 
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xiii) Let 
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 They give us the set of attached prime ideals of top generalized local cohomology module 
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 3. APPLICATIONS OF OPEN PROBLEMS

The thesis shows new results relating to the associated primes and generalized local cohomology modules with respect to a pair of ideals. Those results are extension of previous results of Rotman, Brodmann, Sharp, Takahashi, Saremi, T.T. Nam and N.M.Tri,... They can be applied in local cohomology theory. In the future, we will study some properties concerning to  
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 such as minimax and cominimax modules, associted primes and attached primes.
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